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ABSTRACT

Anatomical landmarks are a crucial prerequisite for many med-
ical imaging tasks. Usually, the set of landmarks for a given
task is predefined by experts. The landmark locations for a
given image are then annotated manually or via machine learn-
ing methods trained on manual annotations. In this paper, in
contrast, we present a method to automatically discover and
localize anatomical landmarks in medical images. Specifi-
cally, we consider landmarks that attract the visual attention
of humans, which we term visually salient landmarks. We
illustrate the method for fetal neurosonographic images. First,
full-length clinical fetal ultrasound scans are recorded with
live sonographer gaze-tracking. Next, a convolutional neural
network (CNN) is trained to predict the gaze point distribution
(saliency map) of the sonographers on scan video frames. The
CNN is then used to predict saliency maps of unseen fetal
neurosonographic images, and the landmarks are extracted as
the local maxima of these saliency maps. Finally, the land-
marks are matched across images by clustering the landmark
CNN features. We show that the discovered landmarks can be
used within affine image registration, with average landmark
alignment errors between 4.1% and 10.9% of the fetal head
long axis length.

Index Terms— Landmark detection, visual saliency,
salient landmarks, image registration, ultrasound.

1. INTRODUCTION

An anatomical landmark is “a point of correspondence on
each object that matches between and within populations” and
is assigned “in some scientifically meaningful way” [1, p. 3].
For brevity, we will refer to anatomical landmarks simply
as landmarks. The selection and localization of landmarks
are essential steps for medical image analysis tasks such as
image registration and shape analysis. Usually, the set of
landmarks for a given task is selected by experts a priori. The
landmark locations for a given image are then either annotated
manually or via machine learning models trained on manual
annotations. However, when clinicians interpret images in
practice based on experience, they may consider only a subset
of the predefined landmarks, or use additional, unspecified
landmarks. Moreover, it might be desirable to automatically

localize landmarks without the need for manual annotations.
Contribution. In this work we overcome these limita-

tions by presenting a method to automatically discover and
localize anatomical landmarks. Specifically, the method re-
veals landmarks that attract the visual attention of clinicians,
which we term visually salient landmarks. The backbone of
the proposed system is a CNN that is trained to predict the
gaze-point distributions (saliency maps) of clinicians observ-
ing images from the domain of interest. For modalities like
ultrasound imaging, gaze-tracking data can be acquired during
image acquisition with no additional expert time expenditure.
The trained CNN is then used to reveal visually salient land-
marks on unseen images and to assign them semantic labels
that can be used to match them across images. To the best of
our knowledge, this is the first work to present a method to
automatically discover landmarks based on visual saliency.

Related Work. In previous work, saliency is often used
to refer to low-level features such as local entropy [2, 3]. More-
over, mutually-salient landmarks based on Gabor attributes
have been proposed for image registration [4]. Here, in con-
trast, we use visual saliency, i.e., the predicted allocation of
human visual attention based on gaze-tracking data, to discover
anatomical landmarks. We apply the method to neurosono-
graphic standard views in fetal anomaly ultrasound scans. The
landmarks for these standard views are defined by a set of
international practice guidelines [5]. A landmark detector has
previously been developed but is trained on manual annota-
tions of a pre-defined set of landmarks [6]. Moreover, gaze
data has been used to support the detection of standard views
in fetal ultrasound scans [7, 8], but these works do not consider
the problem of identifying landmarks.

2. METHODS

2.1. Data

The data were acquired as part of the PULSE (Perception
Ultrasound by Learning Sonographic Experience) project, a
prospective study of routine fetal ultrasound scans performed
in all trimesters by sonographers and fetal medicine doctors
at the maternity ultrasound unit, Oxford University Hospitals
NHS Foundation Trust, Oxfordshire, United Kingdom. The
exams were performed on a GE Voluson E8 scanner (General
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Fig. 1. Overview of the proposed method for the discovery and localization of visually salient landmarks.

Electric, USA) while the video signal of the machine monitor
was recorded lossless at 30 Hz. Operator gaze was simultane-
ously recorded at 90 Hz with a Tobii Eye Tracker 4C (Tobii,
Sweden). This study was approved by the UK Research Ethics
Committee (Reference 18/WS/0051), and written informed
consent was given by all participating pregnant women and
operators. In this paper, we use ultrasound video and corre-
sponding gaze data of 212 second trimester scans acquired
between May 2018 and February 2019.

We selected 90 scans to train the saliency predictor and
used the remaining 122 scans to evaluate the landmark dis-
covery method. We considered the fetal neurosonographic
standard views, i.e., the transventricular (TV) and the tran-
scerebellar (TC) plane (first row in Fig. 2). On the TV plane
the operators measure the head circumference (HC) and the
lateral ventricle (LV). On the TC plane they measure the tran-
scerebellar diameter (TCD), the nuchal fold and the cisterna
magna. The views are defined by the visibility of these struc-
tures as well as the appearance of the cavum septi pellucidi
(CSP). From the 122 ultrasound scans, we automatically ex-
tracted 143 TV and 124 TC plane images by performing optical
character recognition on the machine’s graphical interface.

2.2. Visually Salient Landmark Discovery

Visually salient anatomical landmarks are discovered in three
steps (see Fig. 1): i) training a CNN to predict the sonog-
rapher gaze point distributions (saliency maps) on random
video frames of the routine fetal ultrasound scan data described
above; ii) predicting the visual saliency maps of the neurosono-
graphic images and extracting the landmark locations as the
local maxima of the saliency maps; and iii) clustering the CNN
feature vectors which correspond to the landmark locations.

i) To train the saliency predictor, we use the CNN archi-
tecture and training procedure detailed in previous work [8]
(model Saliency-VAM). The precise architecture and training
procedure are not repeated here as they are not essential for
the proposed landmark discovery method. The CNN takes
ultrasound images of dimension 288×244 as input and per-

forms three two-fold down-sampling operations, which results
in output saliency maps of dimensions Ws×Hs = 36×28.

ii) Let si : [1,Ws]× [1, Hs] ∩ Z2 → [0, 1] be the function
which, for an image with index i = 1, . . . , Ni, maps each
saliency map location to its predicted saliency value (i.e., the
probability that the location is gazed at). The local maxima
of this predicted saliency map are found with the scikit-image
(https://scikit-image.org/) peak local max algorithm. The al-
gorithm first applies a maximum filter

smax
i (x, y) := max

(x′,y′)∈[−d,d]2∩Z2
si(x+ x′, y + y′) , (1)

where d is the minimum distance of any two local maxima
(empirically d = 2). The local maxima are then extracted as
the points where the s equals smax and s is above a threshold
t to suppress spurious maxima (empirically t = 0.1):

Mi := {(x, y)|si(x, y) = smax
i (x, y) ∧ si(x, y) ≥ t} (2)

The landmark locations are obtained by fitting a 2D Gaussian
peak to a 3×3 neighborhood around the saliency map maxima.

iii) Once the landmark locations are extracted, their corre-
spondence across images is still unknown. Recent work has
shown that saliency predictors implicitly learn global semantic
features which are useful for image classification [8]. Here,
we hypothesize that saliency predictors can also be used to ex-
tract local semantic features which allow automatic landmark
classification. Let fi : [1,Ws]× [1, Hs] ∩ Z2 → RNf be the
function which, for image i, maps each location of the saliency
map to the corresponding feature activations of the last CNN
layer, where Nf is the number of channels. Then the set of all
landmark feature vectors F across Ni images is obtained as

F :=

Ni⋃
i=1

{fi(x, y)|(x, y) ∈Mi} . (3)

Finally, the feature vectors are classified via k-means clustering
of F . The number of clusters is automatically selected by
maximizing the Silhouette Coefficient 1

Ni
ΣNi

i=1
b(i)−a(i)

max{a(i),b(i)} ,
where a(i) is the mean intra-cluster distance and b(i) the mean
nearest-cluster distance of sample i [9].



2.3. Application to Image Registration

In order to examine a simple practical use of the visually
salient landmarks, we consider the task of aligning the stan-
dard view images. For each plane, we use two landmarks
to construct an affine transformation of optional horizontal
flipping, translation, rotation and isotropic scaling.

Consider the TV plane (the generalization to the TC plane
is straightforward). For image index i, let Ci =

(
cix, c

i
y

)
∈ R2

be the coordinates of the salient landmark corresponding to
the CSP, and let Di =

(
dix, d

i
y

)
∈ R2 be the coordinates of

the landmark corresponding to the LV (or the cerebellum for
the TC plane). Let j and k be the indices of the source and
target images to be aligned. For a point p = (px, py) on the
images with width Wi, optional flipping of the x-coordinate is
performed with the function f : R→ R with

f(px) =

{
Wi − px if sgn(ctx − dtx) 6= sgn(cjx − djx)

px otherwise,
(4)

which makes use of the fact that the horizontal ordering of
the landmarks determines the orientation of the fetal head
(see Fig. 2). Let Cj,f =

(
f(cjx), cjy

)
and Dj,f =

(
f(djx), djy

)
be the source image landmarks after optional horizontal
flipping. Next, the images are aligned with the transla-

tion vector t = (tx, ty) =
−−−−→
Cj,fCk, the isotropic scal-

ing factor ρ = ‖
−−−−→
CkDk‖/‖

−−−−−−→
Cj,fDj,f‖ and the rotation angle

θ = ∠(
−−−−−−→
Cj,fDj,f ,

−−−→
CkDk), where the latter two operations are

performed with center Ck. The resulting affine transformation
T j,k : R2 → R2 of a point P j = (pjx, p

j
y) on the source image

to the estimated point P̂ k = (p̂kx, p̂
k
y) on the target image is

p̂kxp̂ky
1

 =

 α β (1− α) ckx − β cky
−β α β ckx + (1− α) cky
0 0 1

f(pjx) + tx
pjy + ty

1

 , (5)

where α = ρ · cos(θ) and β = ρ · sin(θ).
We evaluate the alignment method for all unique image

pairs of each plane. First, we manually annotated the CSP,
LV, TCD and HC as shown in the first two rows of Fig. 3.
Each transformation is then evaluated based on the distances
of the CSP, LV and TCD centers. In addition, the alignment
of the fetal skull is assessed via the distance of the ellipse
centers. All distances are reported as percent of the respective
HC long axis length. Three baselines are implemented: First,
no alignment (“None”); second, manually aligning the head
orientation via horizontal flipping (“Left-Right” (LR)); and
third, manually aligning the head orientation plus subsequent
intensity-based registration (“LR + Intensity”). For the latter,
we compute similarity transformations via the SimpleElastix
library [10], using the normalized cross-correlation metric with
default settings and a maximum of 256 iterations per scale.

Head
circumference

Cerebellum

Vermis

Ultrasound
image

Saliency
overlay

Landmark
locations
and cluster
labels

Lateral ventricle

Nuchal fold

TV TC

Choroid
plexus

Cavum septi
pellucidi

Cisterna magna

Fig. 2. Exemplary results of the visually salient landmark
discovery method. The top row illustrates the anatomy of
the respective standard view, with biometric measurements
highlighted in red [11]. The first row of the image grid shows
exemplary neurosonographic images. The second row shows
an overlay of the predicted saliency map. The third row shows
the discovered landmarks with cluster labels.
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Fig. 3. Exemplary results of the image registration via visually
salient landmarks. The first and second row show target and
source images with overlaid annotations of the CSP (box),
LV (TV line) and TCD (TC line). The third row shows the
transformed images overlaid with the transformed annotations.

3. RESULTS

Salient Landmark Discovery. Fig. 2 shows exemplary results
of the salient landmark discovery method. All shown predicted
saliency maps have two peaks: one at the CSP and one at the
LV (TV images) or at the cerebellum (TC images). The cluster
labels correctly match the landmarks across images.

Application to Image Registration. After assigning
the anatomical structures to the corresponding cluster labels,
88.0% of the discovered landmarks were near the correct
annotated structure (within a radius of 10% of the HC long
axis). Conversely, 77.1% of the annotated structures were
near a corresponding discovered landmark. Alignment was
performed for 89 (62%) TV images and 67 (54%) TC images
which had all annotated structures correctly identified. Fig. 3
shows exemplary results and Table 1 shows the corresponding
quantitative evaluation. The alignment errors are consistently
lower for salient landmarks compared to the baselines.



Table 1. Quantitative results of the image registration with
visually salient landmarks and baselines. The errors for the
CSP, LV, cerebellum (“Cereb.”) and HC center are given in
percent of the respective HC long axis length.

Plane Alignment CSP LV/Cereb. HC Center

T
V None 39.3 ± 0.3 21.9 ± 0.2 15.1 ± 0.1

Left-Right (LR) 16.9 ± 0.1 8.9 ± 0.1 15.2 ± 0.1
LR + Intensity 15.5 ± 0.1 8.2 ± 0.1 13.9 ± 0.1
Salient LM 9.8 ± 0.1 4.1 ± 0.0 7.1 ± 0.0

T
C None 58.1 ± 0.4 24.8 ± 0.2 28.5 ± 0.2

Left-Right (LR) 28.4 ± 0.2 12.0 ± 0.1 24.8 ± 0.1
LR + Intensity 27.2 ± 0.2 11.6 ± 0.1 24.4 ± 0.2
Salient LM 10.9 ± 0.1 5.7 ± 0.1 6.7 ± 0.0

4. DISCUSSION AND CONCLUSION

The results of Sec. 3 show that the proposed method success-
fully discovers visually salient landmarks based on predicted
human gaze. While the guidelines define a large set of standard
plane criteria via the illustration shown in Fig. 2, the landmark
discovery method reveals which structures the operators pay
attention to in practice. Specifically, the landmarks correspond
to key anatomical structures in the brain, i.e., the LV, cerebel-
lum and CSP. The CSP itself is not part of any measurement,
but it helps the sonographer assess the horizontal orientation
of the fetal head and is part of both views [5]. In general, the
only prerequisite for applying the landmark discovery method
is a set of images from the domain of interest with recorded
gaze data in order to train the saliency predictor.

For image registration, the results show that our approach
can achieve good alignment without explicit supervision. The
landmarks are successfully matched based on the local fea-
tures of the saliency prediction CNN. The intensity-based reg-
istration performs significantly worse and only slightly above
the trivial “No align” and “Flip” baselines since intensity-
based alignment of ultrasound images is inherently difficult
due to noise, shadowing, artifacts and the visibility of mater-
nal anatomies [12]. The landmark discovery based on visual
saliency prediction effectively ignores the irrelevant structures
as a human would. A limitation is that landmark-based align-
ment is only possible if all necessary landmarks are detected.
Moreover, the quality of alignment may be limited by the
affine transform, as visible for the TC plane in Fig. 3, and a
non-rigid transformation might yield an improvement.

In conclusion, we have presented a new method to discover
visually salient anatomical landmarks by predicting human
gaze. We have applied the method to fetal neurosonographic
images and shown the merit for image alignment compared
to intensity-based registration. Avenues for future work in-
clude a comparison of the registration performance to keypoint
descriptors (e.g. SIFT), and the application of the proposed
visually salient landmarks in other areas of radiology, in bio-
logical imaging and in cognitive science.
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