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Abstract. For visual tasks like ultrasound (US) scanning, experts di-
rect their gaze towards regions of task-relevant information. Therefore,
learning to predict the gaze of sonographers on US videos captures the
spatio-temporal patterns that are important for US scanning. The spatial
distribution of gaze points on video frames can be represented through
heat maps termed saliency maps. Here, we propose a temporally bidirec-
tional model for video saliency prediction (BDS-Net), drawing inspiration
from modern theories of human cognition. The model consists of a convo-
lutional neural network (CNN) encoder followed by a bidirectional gated-
recurrent-unit recurrent convolutional network (GRU-RCN) decoder. The
temporal bidirectionality mimics human cognition, which simultaneously
reacts to past and predicts future sensory inputs. We train the BDS-Net
alongside spatial and temporally one-directional comparative models on
the task of predicting saliency in videos of US abdominal circumference
plane detection. The BDS-Net outperforms the comparative models on
four out of five saliency metrics. We present a qualitative analysis on
representative examples to explain the model’s superior performance.

Keywords: Fetal ultrasound · Video saliency prediction · Gaze tracking·
Convolutional neural networks

1 Introduction

Recently, it has been demonstrated that sonographer gaze tracking can aid
standard plane detection in fetal ultrasound (US) imaging. Cai et al. [8] proposed
the SonoEyeNet model for abdominal circumference plain (ACP) detection.
Recorded gaze tracking heat maps—hereafter referred to as saliency maps—
are used as attention on feature maps which are extracted with a fine-tuned
SonoNet model [4]. Next, Cai et al. [9] proposed the Multi-task SonoEyeNet.
Instead of relying on gaze data as an input, an attention module learns to predict
saliency maps so that no gaze tracking data is required for inference. Recently,



2 R. Droste et al.

Droste et al. [14] demonstrated that a saliency predictor trained entirely without
manual annotations can be transferred to perform standard plane detection
in routine clinical videos. These models perform standard plane detection and
saliency prediction on single-frames only. However, ultrasound data and human
eye movements are inherently spatio-temporal signals.

Fig. 1: BDS-Net predicted saliency
maps. The key structures are marked.
U. V. denotes umbilical vein and S.
B. stomach bubble.

In this work we aim at improving ultra-
sound saliency prediction through spatio-
temporal modeling, i.e. video saliency pre-
diction. Therefore, we aim to bridge the
gap between existing spatio-temporal mod-
els which do not leverage gaze informa-
tion, e.g. for fetal cardiology [18,16] or US
video partitioning [22], and models like So-
noEyeNet that do not utilize temporal in-
formation. Chaabouni et al. [10] present an
early convolutional neural network (CNN)
based approach for video saliency predic-
tion, adding optical flow as an additional
input channel to a single-frame CNN. Bak
et al. [2] propose to include optical flow
via a two-stream architecture [23]. Bazzani
et al. [5] achieve much larger temporal depth with a recurrent mixture density
network by aggregating feature vectors with a long short-term memory (LSTM)
model. Wang et al. [27] recently proposed a large video saliency benchmark
(DHF1K) and show that existing video saliency predictors do not outperform
the best single-frame saliency predictors. In contrast, Wang et al. achieve state-
of-the-art on their benchmark with an architecture consisting of a CNN encoder
and a convolutional LSTM decoder.

The above mentioned spatio-temporal models predict the saliency map of each
video frame based on aggregated information of the previous frames. However,
research in cognitive science suggests that human perception is not just reacting
to past and present stimuli. Clark [13] argues that the brain is a ‘prediction
machine’ that strives to minimize the prediction error between expectations
versus sensory inputs. We transfer this insight to the problem of predicting
sonographer visual saliency on US videos. Since the sonographer’s expectations
about future visual stimuli are unknown, we use future video frames as a proxy
thereof, and ask the question: To what extent are future video frames predictive
for visual saliency? Song et al. [25] recently proposed a bidirectional model for
video salient object detection, which is a related application but aims at detecting
and segmenting the most salient object in a scene rather than predicting the
actual distribution of gaze points. Here, we propose an architecture combining a
CNN and a temporally bidirectional recurrent neural network, BDS-Net, that
predicts the visual saliency of each frame based on information of the entire
video sequence, and compare the performance of the BDS-Net to an equivalent
one-directional and a purely spatial model.
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Contributions. The contributions of this study are three-fold: (1) To the best of
our knowledge, this is the first study to propose a temporally bidirectional model
for video saliency prediction, both in medical imaging and in computer vision
more generally. Since the model considers the entire video sequence for saliency
prediction of each frame, this approach is fundamentally different from previous
models that only consider past and present frames. (2) We demonstrate that it
is possible to train an effective video saliency predictor with few more than one
hundred sequences, despite high inter-sequence variance. We achieve high data-
efficiency by employing effective transfer learning and regularization techniques,
and by reducing model complexity where possible, e.g. using a gated-recurrent-
unit recurrent convolutional network (GRU-RCN) instead of a convolutional
LSTM. (3) We demonstrate that the trained US video saliency predictor has
learned meaningful aspects of sonographers’ cognition in selecting the ACP.
Therefore, we expect the model to be beneficial as part of architectures such as
the Multi-task SonoEyeNet [9].

2 BDS-Net

The BDS-Net architecture consists of a truncated SonoNet-64 model as frame-
wise encoder, adaptation I that extracts the task-relevant features, a bidirectional
GRU-RCN to aggregate the features temporally, and adaptation II to assemble
the saliency map, followed by a softmax function (Fig. 2). In the following, we
will use the vector notation vt = [vt0, v

t
1, ..., v

t
n]>.

Truncated SonoNet-64. The SonoNet model was recently proposed for US stan-
dard plane detection [4]. It is derived from the VGG-16 architecture [24], removing
the final max-pooling and replacing the fully-connected layers with adaptation
layers of 1×1-convolutions followed by global average pooling. Also, batch nor-
malization [19] is added to each convolutional layer. The authors present three
model variants with different numbers of convolutional kernels and train them
on over 27 thousand US standard plane images. For this work, we use the largest
variant, SonoNet-64, which was shown to achieve the highest overall precision.
To use the model as a feature extractor, we remove the adaptation layers since
they are classification-task specific. Further, we truncate the model by discarding
the final three 3×3-convolutional layers to obtain lower-level features. We use the
remaining 10 convolutional layers as frame-wise encoder of the BDS-Net. Since
the SonoNet training data is substantially larger than the data available for this
work, we use the model with fixed pre-trained weights.

Bidirectional GRU-RCN. We propose a bidirectional gated-recurrent-unit recur-
rent convolutional network (GRU-RCN) as the spatio-temporal decoder of the
network. GRU networks [11] mitigate the exploding/vanishing gradient problem
of a regular RNN similarly to LSTM networks [17] by updating the hidden
state through element-wise additive and multiplicative gates instead of matrix
multiplications. Compared to LSTM networks, however, they yield faster training
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Fig. 2: Schema of the BDS-Net architecture and training procedure. For better
readability, activation and normalization layers are not explicitly shown. The
dashed part of the SonoNet-64 is only used for an ablation study.

convergence and higher accuracy on tasks like video captioning, despite reduced
complexity and fewer learned parameters [12]. While the standard GRU operates
on 1D feature vectors, the GRU-RCN [3] is a straightforward extension for stacked
2D feature maps, replacing matrix products with convolutions. This modification
vastly reduces the number of parameters compared to a fully-connected GRU
and preserves the spatial feature topology. The bidirectional GRU-RCN is con-
structed from two separate GRU-RCN instances that propagate their hidden
states forwards and backwards through time, respectively.

In the forward GRU-RCN, denoted by ·�, the candidate activation h̃�
t at

time t is computed from the feature activations aft and the previous hidden state
h�
t−1 as:

r�
t = σ(W�

r ∗ [h�
t−1|a

f
t ] + b�

r ) (1)

h̃�
t = tanh

(
W�

h ∗ [r�
t ◦ h�

t−1 |a
f
t ] + b�

h

)
, (2)

where r�
t is the reset gate, W�

· and b�
· are the respective convolutional filters

and biases, σ(·) is the logistic sigmoid function, ∗ is the convolution operator,
◦ denotes element-wise multiplication and [·|·] denotes concatenation along the
feature dimension. The reset gate controls the propagation of the previous hidden
state into the current hidden state. Next, the activation h�

t is computed as a
linear interpolation between the previous activation and the candidate activation,
modulated by the update gate z�

t :

z�
t = σ(W�

z ∗ [h�
t−1|a

f
t ] + b�

z ) (3)

h�
t = (1− z�

t ) ◦ h�
t−1 + z�

t ◦ h̃�
t . (4)
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The backward GRU-RCN activation h�
t is computed equivalently, using the

activation h�
t+1 of time t+ 1 as the previous activation. Finally, the activations

of the forward and backward RCNs are concatenated as ht = [h�
t |h�

t ].
We normalize the activations and gates throughout the GRU with layer

normalization [1]. We found no increase in performance by replacing the layer
normalization with instance normalization [26] in the GRU. Batch normalization
is not compatible since we set the batch size to one due to the high variability of
the sequence lengths. Further, we observed no improvement through dropout on
the GRU inputs [29] or variational recurrent dropout [15]. To avoid over-fitting,
the kernel size of Wr and Wz are set to size 1×1. Only the kernels of Wh for
computing the candidate activation are set to size 3×3.

Adaptations I & II. The first set of adaptation layers reduces the feature length
of the SonoNet output. Since the SonoNet features are learned on several fetal
anatomies, only a subset of the SonoNet features is likely to be relevant for the
fetal abdomen. A convolutional layer of dimension 1×1×128×512 (2D kernel size
× output dimension× input dimension) reduces the feature length, followed by a
layer of dimension 3×3×128×128 to adapt the feature maps. Layer normalization
[1] is performed after each layer. The final adaptation layer, a single convolutional
layer of dimension 1×1×1×128, assembles the final saliency map.

Loss function. At each time step t ∈ {0, 1, ..., T} and output pixel i ∈ {0, 1, ..., P},
we obtain the predicted saliency ŝti from the activations ŷti of the final adaptation

layer via the softmax function ŝti = eŷ
t
i (
∑P

j=0 e
ŷt
j )−1. Consequently, we implicitly

treat the saliency maps as generalized Bernoulli distributions of fixations over the
pixels of each frame [20]. We compute the loss as the sum of the Kullback-Leibler
Divergences between the predicted distributions3 and the downscaled ground
truth distributions st as L =

∑T
t=0

∑P
i=0 s

t
i · (log(sti)− log(ŝti))

3 Experiments

3.1 Data

The gaze data for this study had previously been recorded based on 33 fetal US
videos, which were acquired according to a manual US sweep protocol, moving
the probe from the bottom to the top of pregnant women’s abdomen. Table 1
summarizes the data preparation procedure. (1) Discarding of irrelevant frames:
From each of the 33 full sweeps an ACP sweep was extracted by discarding the
frames which do not show the fetal abdomen. (2) ACP selection by sonographers:
Each ACP sweep was presented to eight sonographers independently with the
task of selecting the abdominal circumference plane (ACP). The sonographers
were able to scroll through the frames using a keyboard until deciding on one
ACP frame. The gaze of the sonographers was recorded at 30 Hz using an eye

3 In our implementation, for numerical stability, we compute log(ŝti) with a log-softmax
function instead of computing the softmax and logarithm sequentially.
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Table 1: Data preparation procedure.

Data preparation step Output

1) Discarding of irrelevant frames ACP sweeps

For each sweep:
2) ACP selection by sonographers ACP search

sequences
For each ACP search sequence:

3) Gaze point aggregation Gaze maps
4) Gaze map filtering Saliency maps

tracker (The EyeTribe) placed beneath the screen. In addition, the current sweep
frame was registered for each gaze point. This yielded 33× 8 = 264 sequences of
gaze point-sweep frame pairs, which we will refer to as ACP search sequences. The
ACP search sequences represent the way the sonographers moved through the
frames to find the ACP. Therefore, they are a potentially useful approximation of
freehand US video sequences where the sonographers find the ACP by moving the
probe. The sequences were manually inspected and recordings with low-quality
gaze data or miscalibration were discarded, leaving 116 sequences for further
processing. (3) Gaze point aggregation: Since we want our model to learn the
search strategy of sonographers from the first glance until the final ACP plane
decision, we want to train the model on entire ACP search sequences. At 30 Hz,
however, the sequences are too long (at least several hundred frames) and contain
high redundancy among consecutive frames. Therefore, the gaze points were
aggregated over intervals of 1000 ms at every 8th gaze sampling time, reducing
the sampling rate from 30 Hz to 3.75 Hz. Gaze points outside the US image fan
were discarded. A gaze map was computed for each aggregated set of gaze points
by setting each pixel value to its corresponding number of gaze points. The
frames were re-sampled at the same sampling times. The resulting sequences of
gaze map-sweep frame pairs are of length 13 to 147 (avg. 33.6). (4) Gaze maps
filtering: The saliency maps were computed by smoothing the gaze maps with
a Gaussian kernel. The resulting final sequences of saliency map-sweep frame
pairs are henceforth referred to as saliency sequences. The ACP sweeps were
divided into 30 sweeps for training and 3 sweeps for validation with five-fold
cross-validation.

3.2 Implementation Details

Preprocessing. The frames are preprocessed following Baumgartner et al. [4]. Data
augmentation is performed by random rotation with an angle uniformly sampled
from [−25, 25] degrees and random horizontal flipping. Scale augmentation is
omitted since it results in cropping of parts of the fetal abdomen. Next, the
frames are normalized to zero-mean and unit-variance, multiplied by 255 and
resized to 288× 224 px. For the calculation of the loss, the ground truth saliency
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maps are transformed analogously and resized to 18× 14 px, which is the output
dimension of the network for inputs of 288× 224 px.

Training. The model is trained over 140 epochs via stochastic gradient descent
(SGD) with Nesterov momentum of 0.9 and initial learning rate 0.004. In accor-
dance with Keskar et al. [21], we find that SGD yields better generalization to
the validation set compared to ADAM. The learning rate is decayed by a factor
of 0.5 each time the validation loss stagnates. The batch size is one to allow for
varying sequence lengths. Sequences longer than 60 frames are truncated. The
model is regularized via weight decay of 1 · 10−6, dropout with rate 0.2 before the
second and the last adaptation layers, as well as clipping the gradients outside
the interval [−5, 5]. The z-gate bias is initialized to 1 to stabilize training by
learning the spatial features first.

Comparative models. Two comparative models are implemented: A one-directional
GRU-RCN model and a purely spatial, single-frame model. The one-directional
model is constructed by removing the backward GRU-RCN module from the
BDS-Net. All other architectural and training parameters are identical. For the
spatial model, the bidirectional GRU-RCN is simply replaced by an additional
convolutional layer of dimension 3×3×128×128. Moreover, the layer normalization
modules are removed and batch normalization is added to each layer. Training
is performed on batches of 16 randomly selected frames and dropout with rate
0.5 is added to all layers. The initial learning rate is increased to 0.01 and no
weight-decay is performed. Furthermore, we perform an ablation study to examine
the effect of using the full SonoNet-64 (only adaptation layers removed) or the
truncated SonoNet-32 models instead of the truncated SonoNet-64. The results
are presented in subsection 4.3.

3.3 Evaluation Metrics

We evaluate the models on the metrics of the MIT Saliency Benchmark [7].
For this, we ported the MATLAB code published by the authors4 to Python.
We consider the fixation point (gaze map) based metrics Normalized Scanpath
Saliency (NSS) and Area Under the ROC Curve by Judd (AUC-J), as well as the
distribution (saliency map) based metrics Kullback-Leibler divergence (KLD),
Linear Correlation Coefficient (CC) and Similarity (SIM). AUC-J, KLD and SIM
are more sensitive to false negatives than to false positives, while NSS and CC
treat them symmetrically [6]. To compute the average scores on each validation
set, the scores are first averaged across time for each sequence and then across
sequences. Thus, shorter and longer sequences weigh equally in the average. The
differences between the respective cross-validated model scores are tested for
statistical significance with the Wilcoxon test.

4 https://github.com/cvzoya/saliency
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Table 2: Cross-validation scores (mean ± standard deviation) of the BDS-Net
and the spatial and one-directional models. The best scores are marked in bold.
The superscripts ∗ and † denote an improvement with p < 0.05 over the spatial
and one-directional models, respectively.

Model NSS ↑ AUC-J ↑ KLD ↓ CC ↑ SIM ↑

Spatial 1.40 ±0.36 0.83 ±0.04 3.01 ±0.37 0.26 ±0.06 0.23 ±0.04
One-directional 1.49 ±0.34 0.85 ±0.04 ∗ 2.22 ±0.25 ∗ 0.27 ±0.06 0.21 ±0.03
BDS-Net 1.61 ±0.33 ∗† 0.87 ±0.03 ∗† 2.16 ±0.27 ∗† 0.29 ±0.06 ∗† 0.23 ±0.04 †

4 Results

4.1 Quantitative Results

Table 2 shows the validation scores of the BDS-Net and comparative models.
The BDS-Net receives the best scores on all metrics except SIM. Moreover, both
spatio-temporal models perform better on average than the spatial model on all
metrics except SIM. For SIM, the BDS-Net scores better than the one-directional
model but is on par with the spatial model.

4.2 Representative Examples

Figures 1 and 3 show examples of the predictions of the BDS-Net model and the
comparative models on validation data. Since training and validation data were
divided scan-wise, the frames are entirely unseen by the networks. Moreover, the
networks are agnostic as to which sonographer is observing the scan.

Fig. 1 shows input frames, ground truth saliency maps and BDS-Net pre-
dictions for three representative frames of one exemplary sequence. At frame
zero, the prediction is highly uncertain. Areas throughout the middle and the
upper boundary of the abdomen are predicted as fixation candidates. The highest
probability is assigned to the area around the upper rib, which is not well visible.
The ground truth fixation is between the spine and the upper rib. At frame
seven, the BDS-Net assigns high saliency values to the spine and lower values
to the umbilical vein. The ground truth fixations are at the spine. At frame
nineteen, near the end of the sequence, the network assigns approximately equal
probabilities to umbilical vein and spine. The ground truth fixations are indeed
on umbilical vein and spine.

Fig. 3 shows a more detailed example of BDS-Net predictions for five represen-
tative frames of another exemplary sequence. Additionally, the predictions of the
spatial and one-directional models are shown. At frame zero, both spatio-temporal
models predict uncertain saliency maps with a spread-out peak between spine
and upper rib as denoted with a) in the figure. The spatial model, which does
not have information about the position of the frame in the sequence, predicts
saliency at the spine with high certainty. The ground truth fixations are both
at spine and the upper rib. Over the next frames, the recurrent models predict
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Fig. 3: Five frames from an exemplary ACP search sequence. The rows show the
input frames, the ground truth saliency annotations, and the saliency predictions
of the BDS-Net and the spatial and one-directional models, respectively. The
relevant anatomical structures are denoted in the last input frame (top right).

temporally smooth saliency maps with slightly varying maxima around the center
of the abdomen and the spine. The maxima of the spatial model fall into the same
regions but the maps are less temporally smooth. Two key advantages of the
BDS-Net predictions are denoted with b) and c). At frame sixteen, in the middle
of the sequence, the sonographer fixates the center of the abdomen. The spatial
model predicts fixations around the spine and the one-directional model predicts
fixations at either the spine or the center. Only the bidirectional model, which
has information about both the previous and the subsequent frames, correctly
predicts the fixation at the center and omits the spine, as denoted by b). On
frames 24 and 32, towards the end of the search sequence, the sonographer fixates
on the spine, the center of the abdomen and the lower rib, which is not well
visible in these frames. Only the BDS-Net correctly assigns probability of fixation
to the lower rib, indicated by c).
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Table 3: Scores for the ablation study of the feature extractor on one randomly
chosen validation set.

Feature Extractor NSS ↑ AUC-J ↑ KLD ↓ CC ↑ SIM ↑

Full SonoNet-64 1.50 0.86 2.21 0.29 0.22
Truncated SonoNet-32 2.01 0.90 2.01 0.37 0.25
Truncated SonoNet-64 2.20 0.91 1.78 0.39 0.27

4.3 Ablation Study

The quantitative results for the ablation study of the feature extractor are shown
in Table 3. The ranking of the models is consistent across all five metrics: The
full SonoNet-64 with higher-level features performs least favorable, the smaller
truncated SonoNet-32 ranks second and the truncated SonoNet-64 performs best.

5 Discussion

The BDS-Net outperforms both comparative models on the AUC-J and NSS
metrics, which are the default metrics of the MIT Saliency Benchmark [7].
Moreover, the one-directional model outperforms or matches the score of the
spatial model on those metrics, despite the fact that training the spatial model
is arguably easier for several reasons. First, gradient steps can be computed for
each of the 3901 saliency maps per epoch separately. For the recurrent models, in
contrast, gradient steps can only be computed for the 104 sequences per epoch.
Second, the gradients are noisier for recurrent models in general. We mitigate
this problem through gradient clipping, but it is an ad-hoc solution, and it does
not resolve vanishing gradients. Finally, batch normalization is applied in the
spatial model. For the recurrent models, since we set the batch size to one to
account for the varying sequence lengths, we revert to layer normalization, which
is known to stabilize training less for most tasks [28]. The fact that the recurrent
models perform better despite the more difficult training conditions is a strong
indication that spatial information (the current frame) alone is not sufficient to
predict US video saliency accurately. This is in accordance with the results of
Wang et al. [27] who have shown for natural videos that a recurrent architecture
can outperform sophisticated single-frame saliency predictors.

Moreover, we have shown quantitatively and qualitatively that the bidi-
rectional model performs better than the one-directional model. The added
backwards GRU-RCN is the only difference between the two architectures, i.e.
no other layers were added or removed and the training procedures are identi-
cal. This supports our hypothesis that sonographers are implicitly predicting
future frames and focus their visual attention accordingly. Since predicting future
frames requires domain expertise, we see this approach as a step towards modeling
sonographer experience.

It is difficult to say how much room for improvement remains for the given
dataset. Naturally, there is a certain inter-observer variability in the ACP search
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strategies. The model can only learn to predict the saliency corresponding to
some average search strategy across all sonographers. To compute the actual
maximum saliency scores, the inter-observer congruence (IOC) would need to
be quantified. In our case, however, this is particularly difficult since each gaze
sequence corresponds to a unique frame-sequence controlled by the sonographer.
Therefore, there is no common reference frame for comparing the gaze sequences.

Nonetheless, despite the missing reference values for the quantitative eval-
uations, the qualitative analyses have shown that the BDS-Net has learned
meaningful spatio-temporal patterns in the sonographers’ search strategies. The
analyses of Cai et al. [9] have shown that similar learned experience can signifi-
cantly improve US standard plane detection on single frames. We expect that
our video saliency predictor can further improve the performance of such models.

6 Conclusion and Outlook

We have presented a new model for predicting video saliency during ACP plane
selection. We have shown that the temporally bidirectional BDS-Net model pre-
dicts saliency more accurately than single-frame and one-directional comparative
models. The model has learned meaningful spatio-temporal patterns that attract
sonographers’ attention. Therefore, we expect the model to be beneficial for US
standard plane detection tasks. In future work we will transfer the model to a
larger dataset, which is currently being acquired. This will allow us to explore
the limits of this approach for learning sonographic experience. Furthermore, we
plan to integrate the model into architectures for US image analysis tasks such
as standard plane detection and video partitioning.
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