

Ultrasound Image Representation Learning by Modeling Sonographer Visual Attention

Richard Droste¹, Yifan Cai¹, Harshita Sharma¹, Pierre Chatelain¹, Lior Drukker², Aris T. Papageorghiou², J. Alison Noble¹ ²Nuffield Department of Women's & Reproductive Health, University of Oxford, UK ¹Department of Engineering Science, University of Oxford, UK

Research Question

Can transferable image representations be obtained automatically by learning to predict expert gaze?

Introduction

- Image representations are commonly learned via class labels Simplistic approximation of human image understanding
- Humans direct their visual attention towards informative regions
- > Location of visual attention can be recorded via gaze tracking
- The visual patterns that attract gaze can be learned with CNNs "Visual attention model (VAM)" (visual saliency prediction)
- Can visual attention models transfer to medical imaging tasks?
- Image representations are learned by training a CNN to predict automatically acquired gaze on routine ultrasound scans
- The learned representations are evaluated on the task of detecting anatomical standard views [1]

<u>Motivation</u>

Summary

Method

<u>Overview</u>

- 1) Visual Attention Modeling (VAM) Train dilated CNN to predict operator gaze via:
 - a) Gaze point regression
 - b) Visual saliency prediction

2) Evaluation

Evaluate CNN without dilation on the task of **standard plane detection**

Dilated Convolutions

Visual attention modelling

- Insert dilations
- 2) Remove downsampling
- Preserve spatial information

Classification

- Remove dilations
- 2) Insert downsampling
- Preserve receptive field

Visual Saliency Prediction

 Predicts gaze point probability distribution $\hat{\mathbf{S}}$ from activations \mathbf{A}

$$\hat{S}_{i,j} = e^{A_{i,j}} / \sum_{i,j} e^{A_{i,j}}$$

- Target S^* is generated as mixture of Gaussians around gaze points
- Kullback-Leiber divergence loss

$$\mathcal{L}_s(\mathbf{S}^*, \hat{\mathbf{S}}) = D_{\mathrm{KL}}(\mathbf{S}^* || \hat{\mathbf{S}})$$

Gaze Point Regression

 Model regresses geometric median of gaze points via **soft-argmax**[2]

$$\hat{\mathbf{p}} = \sum_{i,j} \hat{S}_{i,j} \left[\frac{j-0.5}{W_D} W, \frac{i-0.5}{H_D} H \right]^{\top}$$

• L2 loss

$$\mathcal{L}_g(\mathbf{p}^*, \mathbf{\hat{p}}) = \|\mathbf{p}^* - \mathbf{\hat{p}}\|_2$$

Data

The PULSE project

Perception Ultrasound by Learning Sonographic Experience:

- Full-length videos of fetal ultrasound scans
- Simultaneous recording of operator gaze tracking and probe motion data
- To better understand and facilitate ultrasound

Visual Attention Modeling

Quantitative Evaluation

		Gaze-VAM				
	KLD	NSS	AUC [%]	CC [%]	SIM [%]	ℓ_2 -norm
Static	3.41 ± 0.02	1.39 ± 0.05	85.9 ± 0.3	14.9 ± 0.4	8.5 ± 0.1	54.4 ± 0.6
Learned	2.43 ± 0.03	4.03 ± 0.05	96.7 ± 0.2	31.6 ± 0.3	18.5 ± 0.2	27.4 ± 0.4

- Predictions more accurate than typical benchmark scores and related work [3]
- Lack of additional baseline methods since typical saliency predictors cannot handle classification

Standard Plane Detection

Transfer Learning

	Rand. Init.	Gaze-FT	Saliency-FT	Δ (Saliency,	SonoNet-FT
				Rand. Init.)	(Lit. value [1])
Precision	70.4 ± 2.3	67.2 ± 3.4	79.5 ± 1.7	9.1 ± 2.1	$82.3 \pm 1.3 (81)$
Recall	64.9 ± 1.6	$57.3~\pm~4.5$	$\textbf{75.1} ~\pm~ 3.4$	$10.2~\pm~1.9$	$87.3 \pm 1.1 (86)$
F1-score	67.0 ± 1.3	$60.7~\pm~3.9$	$76.6 \ \pm \ 2.6$	$9.6~\pm~2.1$	$84.5 \pm 0.9 (83)$

- Significant improvement over training from random initialization
- Approaching fully supervised reference despite 20x less labeled data

T-SNE Visualization of Feature Space

- Most standard planes are well-separated in feature space
- Overlap remains among views of the fetal heart and head

Regression on Fixed Representations

- High-level features predictive for fetal anomaly standard plane detection
- Predictiveness decreases in last layer, indicating task-specificity

